A Gradient Algorithm Locally Equivalent to the Em Algorithm
نویسندگان
چکیده
منابع مشابه
An efficient algorithm to recognize locally equivalent graphs
There are local operators on (labeled) graphs G with labels (gij) in a finite field. If the field is binary, the operations are just the local complementations, but in the general case, there are two different types of operators. For the first type, let v be a vertex of the graph and a ∈ Fq, and we obtain a graph with labels g ′ ij = gij+agvigvj . For the second type of operators, let 0 6= b ∈ ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA new hybrid conjugate gradient algorithm for unconstrained optimization
In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...
متن کاملEM Algorithm
It’s very important for us to understand the data structure before doing the data analysis. However, most of the time, there may exist of a lot of missing values or incomplete information in the data subject to the analysis. For example, survival time data always have some missing values because of death or job transfer. These kinds of data are called censored data. Since these data might obtai...
متن کاملThe Regularized EM Algorithm
The EM algorithm heavily relies on the interpretation of observations as incomplete data but it does not have any control on the uncertainty of missing data. To effectively reduce the uncertainty of missing data, we present a regularized EM algorithm that penalizes the likelihood with the mutual information between the missing data and the incomplete data (or the conditional entropy of the miss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society: Series B (Methodological)
سال: 1995
ISSN: 0035-9246
DOI: 10.1111/j.2517-6161.1995.tb02037.x